Heterogeneous parallel and distributed computing
نویسندگان
چکیده
Heterogeneous network-based distributed and parallel computing is gaining increasing acceptance as an alternative or complementary paradigm to multiprocessor-based parallel processing as well as to conventional supercomputing. While algorithmic and programming aspects of heterogeneous concurrent computing are similar to their parallel processing counterparts, system issues, partitioning and scheduling, and performance aspects are signi®cantly dierent. In this paper, we discuss the evolution of heterogeneous concurrent computing, in the context of the parallel virtual machine (PVM) system, a widely adopted software system for network computing. In particular, we highlight the system level infrastructures that are required, aspects of parallel algorithm development that most aect performance, system capabilities and limitations, and tools and methodologies for eective computing in heterogeneous networked environments. We also present recent developments and experiences in the PVM project, and comment on ongoing and future work. Ó 1999 Elsevier Science B.V. All rights reserved.
منابع مشابه
A new Shuffled Genetic-based Task Scheduling Algorithm in Heterogeneous Distributed Systems
Distributed systems such as Grid- and Cloud Computing provision web services to their users in all of the world. One of the most important concerns which service providers encounter is to handle total cost of ownership (TCO). The large part of TCO is related to power consumption due to inefficient resource management. Task scheduling module as a key component can has drastic impact on both user...
متن کاملParallel computing using MPI and OpenMP on self-configured platform, UMZHPC.
Parallel computing is a topic of interest for a broad scientific community since it facilitates many time-consuming algorithms in different application domains.In this paper, we introduce a novel platform for parallel computing by using MPI and OpenMP programming languages based on set of networked PCs. UMZHPC is a free Linux-based parallel computing infrastructure that has been developed to cr...
متن کاملGreen Energy-aware task scheduling using the DVFS technique in Cloud Computing
Nowdays, energy consumption as a critical issue in distributed computing systems with high performance has become so green computing tries to energy consumption, carbon footprint and CO2 emissions in high performance computing systems (HPCs) such as clusters, Grid and Cloud that a large number of parallel. Reducing energy consumption for high end computing can bring various benefits such as red...
متن کاملStatic Task Allocation in Distributed Systems Using Parallel Genetic Algorithm
Over the past two decades, PC speeds have increased from a few instructions per second to several million instructions per second. The tremendous speed of today's networks as well as the increasing need for high-performance systems has made researchers interested in parallel and distributed computing. The rapid growth of distributed systems has led to a variety of problems. Task allocation is a...
متن کاملHybrid Meta-heuristic Algorithm for Task Assignment Problem
Task assignment problem (TAP) involves assigning a number of tasks to a number of processors in distributed computing systems and its objective is to minimize the sum of the total execution and communication costs, subject to all of the resource constraints. TAP is a combinatorial optimization problem and NP-complete. This paper proposes a hybrid meta-heuristic algorithm for solving TAP in a ...
متن کاملAlgorithm-system scalability of heterogeneous computing
Scalability is a key factor of the design of distributed systems and parallel algorithms and machines. However, conventional scalabilities are designed for homogeneous parallel processing. There is no suitable and commonly accepted definition of scalability metric for heterogeneous systems. Isospeed scalability is a well-defined metric for homogeneous computing. This study extends the isospeed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Parallel Computing
دوره 25 شماره
صفحات -
تاریخ انتشار 1999